Stable and durable factor IX levels over 4 years after etranacogene dezaparvovec gene therapy administration in a Phase 2b trial in patients with haemophilia B

Annette von Drygalski,¹ Steven W. Pipe,² Adam Giermasz,³ Esteban Gomez,⁴ Paul E. Monahan,⁵ Sandra Le Quellec⁶

¹Division of Hematology/Oncology, Hemophilia & Thrombosis Treatment Center, University of California, San Diego, California, USA; ²The Department of Pediatrics and Pathology, University of Michigan, Ann Arbor, Michigan, USA; ³Division of Hematology/Oncology, Hemophilia Treatment Center, University of California Davis, Sacramento, California, USA; ⁴Center for Inherited Blood Disorders, Orange County, California, USA; ⁵CSL Behring, King of Prussia, Philadelphia, USA; 6CSL Behring Europe, Hattersheim am Main, Germany

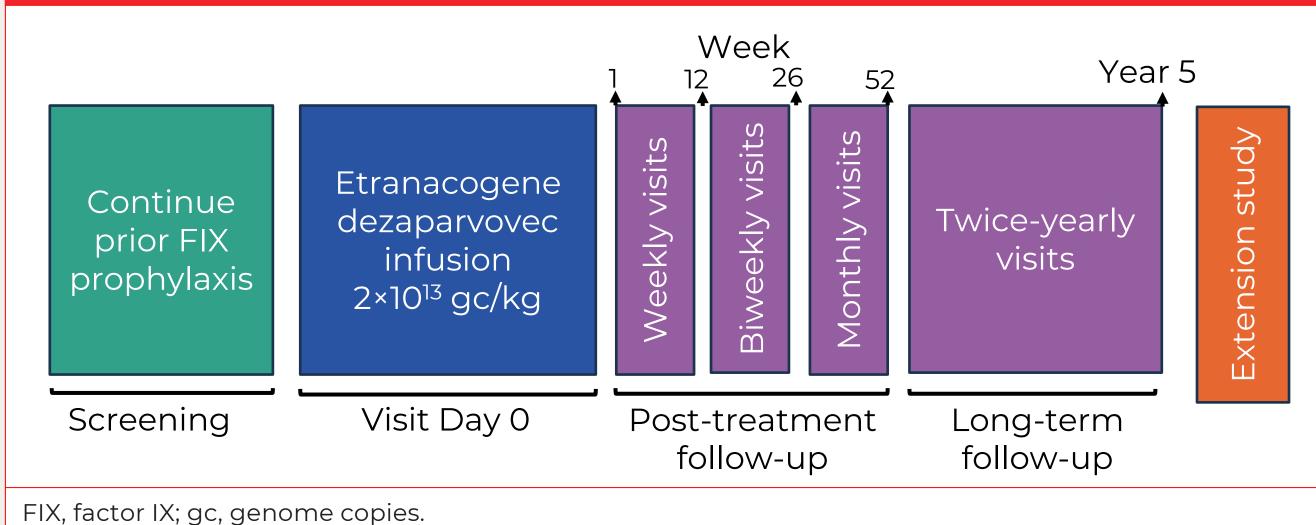
Introduction

- Etranacogene dezaparvovec, the successor of AMT-060 (Figure 1), is an approved gene therapy for haemophilia B (HB)¹
- Sustained and stable FIX activity post-etranacogene dezaparvovec administration has been reported up to 3 years, allowing patients to discontinue prophylaxis²

Figure 1. Evolution of AAV vectors for haemophilia B gene therapy UCL/St Jude vector^{3,4} **AMT-060**⁵ Etranacogene dezaparvovec^{2,6} 8VAA AAV5 AAV5 2 nucleic acid substitutions Highly active **FIX Padua** Wild-type FIX Wild-type FIX **variant** (R388L)² AAV, adeno-associated virus; FIX, factor IX; ITR, inverted terminal repeat; LP1, liver promoter 1; pA, poly A; rAAV, recombinant adeno-associated virus.

Objective

To report 4-year outcomes of etranacogene dezaparvovec from a Phase 2b open-label, single-dose, single-arm, multi-centre trial (NCT03489291; Figure 2) in adults with severe or moderately severe HB (FIX ≤2%; N=3)²

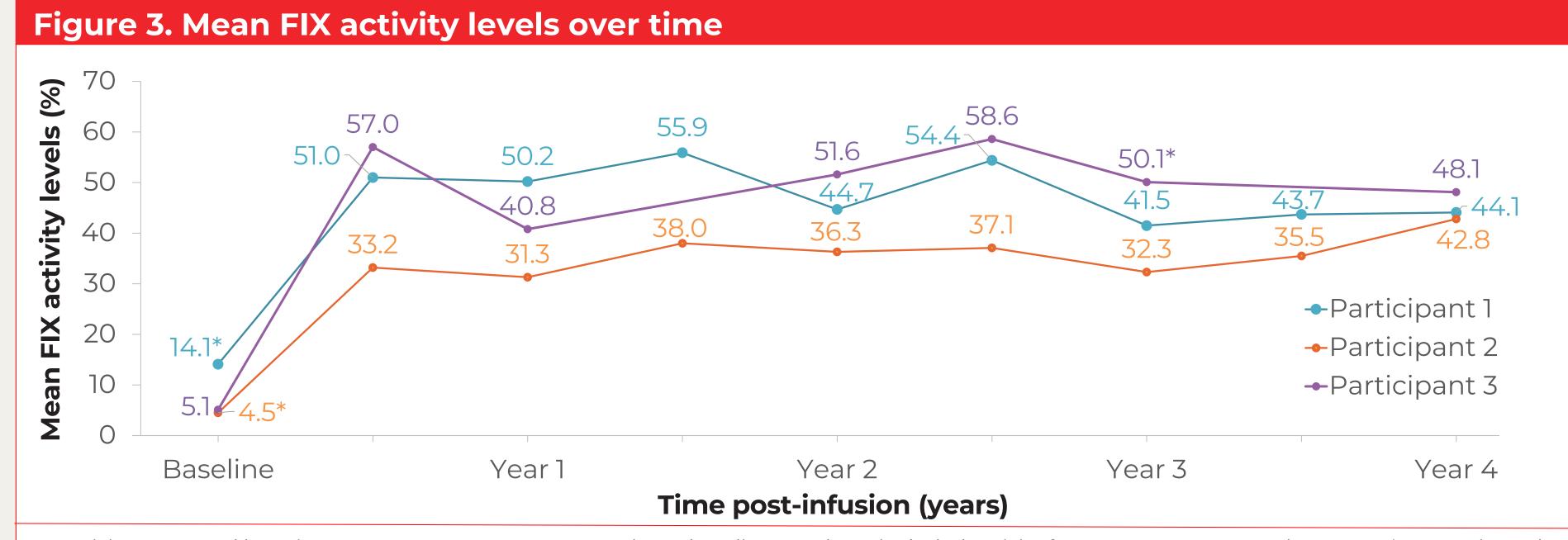

Methods

- The primary endpoint was FIX activity levels ≥5% at Week 6 post-dosing²
- Secondary endpoints included laboratory parameters, bleeding rates and adverse events (AEs)²
- To be included, patients were required to be on routine prophylaxis (**Table 1**)²
- Patients with pre-existing neutralising antibodies (NAbs) to AAV5 were not excluded

Table 1. Baseline demographics ²									
	Participant								
Characteristic	7	2	3						
Age at enrollment (years)	43	50	47						
Weight (kg)	89	81	82						
Baseline FIX activity levels (%)	1	<7	<7						
Prescreening FIX treatment	Prophylaxis (EHL)	Prophylaxis (EHL)	Prophylaxis (EHL)						
ABR 1 year before screening*	3	1	5						
Anti-AAV5 NAb status at screening* (titer) ^{†,‡}	Positive (48)	Positive (44)	Positive (25)						
Anti-AAV5 NAb status at day of dosing* (titer) ^{†,‡}	Positive (22)	Positive (33)	Positive (20)						

Participants 2 & 3 were previously excluded from another AAV-based gene therapy trial for HB based on anti-AAV NAb titer. *Total bleeds (treated + untreated). †AAV5 NAb data considered positive if titer was ≥2. ‡Luciferase cell-based assay. ABR, annualised bleeding rate; EHL, extended half-life; HB, haemophilia B; NAbs, neutralising antibodies.

Figure 2. Study design


Results

SUSTAINED FIX ACTIVITY

- Post-etranacogene dezaparvovec administration, mean (standard deviation [SD]) FIX activity (N=3) increased to 30.57% (6.97) at Week 6, using the one-stage aPTT assay
- Mean (SD; range) FIX activity (N=3) remained stable and in the non-haemophilia range from Year 1 (40.77% [9.45; 31.3–50.2]) to Year 4 (45.00% [2.76; 42.8–48.1]) (**Figure 3**)

HAEMOSTATIC PROTECTION

- No bleeding episodes were reported from Year 3 to 4 (**Table 2**)
 - No FIX was infused outside of invasive procedures
- ABR for the cumulative follow-up period was 0.22 at Year 3 and 0.17 at Year 4

FIX activity measured by using a one-stage aPTT assay. Samples at baseline may have included activity from exogenous FIX replacement. *Contaminated result from a blood sample obtained within 5 half-lives of previous FIX therapy. aPTT, activated partial thromboplastin time; FIX, factor IX.

Table 2. Number of bleeds and FIX consumption excluding invasive procedures

	Number of bleeds (all bleeds)			FIX consumption (IU/year)		
	Participant			Participant		
Year	1	2	3	1	2	3
Baseline ²	3*]*	6*	24,000*	7,681*	63,000*
1	0	0	0	0	O	1,705
2	0	0	2	0	0	3,400
3	0	0	Ο	0	O	O
4	0	0	0	0	0	0

*Data collected retrospectively 1 year before screening from medical records. ABR, annualised bleeding rate; FIX, factor IX.

Sustained and stable FIX activity

post-etranacogene dezaparvovec

routine prophylaxis, irrespective of

administration was observed over 4 years

in all patients, enabling discontinuation of

Results

NO APPARENT IMPACT OF PRE-EXISTING NABS ON DURABILITY OF BLEED PROTECTION

Bleed protection was sustained in patients with pre-existing NAbs to AAV5 (mean titer = 25 at dosing)

SAFETY

- As reported previously:²
- 1 patient experienced 2 mild AEs (possibly treatment related) shortly after dosing
- No patients developed FIX inhibitors
- No thrombosis events occurred

During 4 years of follow-up:

No patients returned to prophylaxis

No clinically significant liver enzyme elevations related to treatment

No patient required corticosteroids

anti-AAV5 NAbs at baseline

References

Conclusions

- 1. HEMGENIX. Summary of Product Characteristics. Available at: https://www.ema.europa.eu/en/documents/product-information/hemgenix-epar-product-
- information_en.pdf. Accessed January 2024
- 2. von Drygalski A, et al. Blood Adv 2023;7(19):5671-79
- 3. Nathwani AC, et al. N Engl J Med 2011;365(25):2357-65 4. Nathwani AC, et al. N Engl J Med 2014;371(21):1994-2004
- 5. Miesbach W, et al. Blood 2018;131(9):1022-31
- 6. Pipe SW, et al. N Engl J Med 2023;388(8):706-18

Acknowledgements

Medical writing support was provided by Meridian HealthComms, funded by CSL Behring.

Funding

Funded by CSL Behring.

CSL Behring

Disclosures

AvD is a consultant for BioMarin, Sanofi Genzyme, Novo Nordisk, Pfizer, uniQure, and Hematherix. SWP received a grant/research support from Bayer, BioMarin, Freeline, Novo Nordisk, and Roche/Genentech and is a consultant for ApcinteX, ASC Therapeutics, Bayer, Be Bio, BioMarin, CSL Behring, HEMA Biologics, Novo Nordisk, Pfizer, Regeneron/Intellia, Roche/Genentech, Sanofi, Spark Therapeutics, Takeda. Member of scientific advisory board for Equilibra Bioscience and Gene Ventiv. AG is a consultant for Bioverativ, Genentech/Roche, BioMarin, and uniQure and serves as a speaker bureau of Bioverativ and Genentech/Roche. **EG** serves as a consultant for Genentech, Global Blood Therapeutics, CSL Behring, and Bayer. **PEM** and **SLQ** are employees of CSL Behring.