

Effect of exacerbations on lung density in Alpha 1 Antitrypsin Deficiency: Subgroup analysis of the RAPID trial programme

Charlie Strange,¹ N. Gerard McElvaney,² Claus Vogelmeier,³ Michael Fries,⁴ Jinesh Shah,⁴ Amgad Shebl,⁵ Oliver Vit,⁶ Marion Wencker,⁷ Kenneth R. Chapman⁸

¹Division of Pulmonary and Critical Care Medicine, Medical University of South Carolina, Charleston, SC, USA; ²Department of Respiratory Medicine, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland;

³Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Germany; ⁴Clinical Strategy and Development, CSL Behring, King of Prussia, PA, USA;

⁵Global Clinical Safety and Pharmacovigilance – Safety Risk Management, CSL Behring, Marburg, Germany; ⁶Clinical Research and Development, CSL Behring, Bern, Switzerland; ⁷conresp, Loerzweiler, Germany; ⁸Department of Medicine, University of Toronto, Toronto, ON, Canada

Introduction

- The RAPID trial programme demonstrated that Alpha 1 Antitrypsin (AAT) therapy is effective and disease-modifying in slowing the rate of lung tissue loss in patients with Alpha 1 Antitrypsin Deficiency (AATD), as assessed by computed tomography (CT) lung densitometry^{1,2}
- Obtaining accurate CT scans is essential to determine therapy-related changes in lung density
- Theoretically, an acute exacerbation of chronic obstructive pulmonary disease (AECOPD) may temporarily induce changes that could impact lung density
- An increase in lung density could be caused by:
- Increased amount of sputum
- Atelectasis
- Increased inflammation leading to increased amounts of fluid in the interstitium
- A decrease in lung density could be caused by:
- Increased bronchial obstruction leading to an increase in hyperinflation
- Some clinicians suggest a 6 week exacerbation-free period; however, to date, no clinical study has determined the optimal length of the exacerbation-free period

Aims

 To assess the effect of AECOPD on CT lung density measurements at full inspiration in a post-hoc analysis of data from the RAPID trial programme

Methods

The RAPID trial programme^{1,2}

- The 4-year programme consisted of an initial, randomised, double-blind placebo-controlled trial (RAPID-RCT), which evaluated 60 mg/kg/week AAT vs. placebo, and an open-label extension study (RAPID-OLE) in which all patients received active therapy
- Spiral CT scans at total lung capacity (TLC) were performed at baseline and at Months 3, 12, 21, 24, 36 and 48

- Data on AECOPD were derived through a combination of adverse event reporting and diary cards recording symptoms (cough, sputum production and breathlessness), which were collected continuously throughout the study
- Exacerbations were defined according to Anthonisen criteria.

Analysis of associations between exacerbations and lung density

- AECOPD (classified as either non-serious or serious) and adjusted 15th percentile (PD15) lung density at TLC were used for the analysis
- Time (in days) from the nearest lung density assessment to an AECOPD was calculated; the number of days was set to zero if an AECOPD occurred at the time of a lung density assessment
- Raw marginal residuals (i.e., difference between fitted and observed PD15 lung density values) from the primary RAPID trial programme analysis model were calculated for measurements that were closest to a prior AECOPD (Figure 1)
- Residuals from patients with no prior AECOPD were also calculated for comparison; residuals were otherwise grouped into exacerbation occurring ≤2 weeks, ≤4 weeks and ≤6 weeks

Results

- Residual PD15 lung density relative to the time since an AECOPD for all patients in the RAPID trial programme are shown in Figures 2A and 2B
- The spread of data suggests higher variability (predominantly in a positive direction) in residual values at time points closer to the occurrence of an AECOPD

Figure 2: Residual PD15 lung density by existence of any prior AECOPD: RAPID-RCT (A): RAPID-OLE (B)

- Mean residual values associated with non-serious and serious AECOPD were similar at each timepoint (Figures 3A and 3B)
- Mean residual PD15 values were similar for patients with and without prior AECOPD
- In RAPID-RCT, a trend towards increased mean residual PD15 lung density was seen following an AECOPD that decreased from 2–6 weeks (bold values in **Table 1**); this trend was not validated in RAPID-OLE

Figure 3: Mean (SD) residual PD15 lung densities for non-serious (A) and serious (B) AECOPD

AECOPD, acute exacerbation of chronic obstructive pulmonary disease; PD15, 15th percentile lung density; SD, standard deviation

Table 1: Mean residual PD15 lung density according to presence/timing of AECOPD

Weeks since prior AECOPD	RAPID-RCT		RAPID-OLE	
	n	Residuals Mean ± SD (g/L)	n	Residuals Mean ± SD (g/L)
Any AECOPD	401	0.06 ± 2.317	203	-0.02 ± 1.405
≤2 weeks	108	0.46 ± 2.413	54	0.06 ± 1.510
>2 weeks	293	-0.08 ± 2.267	149	-0.04 ± 1.370
≤4 weeks	132	0.27 ± 2.356	68	0.12 ± 1.532
>4 weeks	269	-0.04 ± 2.295	135	-0.08 ± 1.338
≤6 weeks	155	0.21 ± 2.333	74	0.15 ± 1.575
>6 weeks	246	-0.02 ± 2.307	129	-0.11 ± 1.294
No AECOPD	384	-0.07 ± 1.900	196	0.02 ± 1.047

AECOPD, acute exacerbation of chronic obstructive pulmonary disease; PD15, 15^{th} percentile lung density; SD, standard deviation

Conclusions

- This analysis supports the concept that AECOPD can influence CT lung density measurements
- A 6 week post-exacerbation period showed no untoward influence of AECOPD on CT lung density; this represents a conservative approach to obtain reliable data for clinical trials

References

- 1. Chapman K et al. Lancet 2015;286:360-368
- 2. McElvaney NG et al. Lancet Respir Med 2017;5:51-60

Funding/Acknowledgements

This study and development of this poster were funded by CSL Behring, King of Prussia, PA. Editorial assistance was provided by Meridian HealthComms, Plumley, UK.

Conflicts of Interest

CS, NGM, CV and KRC are consultants and grant recipients of CSL Behring. MF, JS, AS and OV are employees of CSL Behring; MW is a consultant to CSL Behring.