Sustained efficacy and safety 3 years following infusion with etranacogene dezaparvovec in adults with severe or moderately severe hemophilia B in the Phase 3 HOPE-B clinical trial

Steven W. Pipe¹, Paul van der Valk², Peter Verhamme³, Peter Kampmann⁴, Frank Leebeek⁵, Michiel Coppens⁶, Nigel Key⁷, Nathan Visweshwar⁸, <u>Guy Young⁹, Richard Lemons¹⁰, Robert Klamroth¹¹, Niamh O'Connell¹²,</u> Sandra le Quellec¹³, Paul E. Monahan¹³, Cedric Hermans¹⁴

Introduction

- Etranacogene dezaparvovec, the successor of AMT-060 (Figure 1), is an approved liver-directed AAV5 gene therapy for hemophilia B^{1–3}
- In the HOPE-B Phase 3 clinical trial, etranacogene dezaparvovec demonstrated superior bleed protection compared with factor IX (FIX) prophylaxis up to 24 months post-treatement^{4,5}

AAV5, adeno-associated virus serotype 5; FIX, factor IX; hFIX, human factor IX.

Objective

•To report 36-month outcomes of etranacogene dezaparvovec from the Phase 3 HOPE-B trial in adult males with severe or moderately severe hemophilia B (FIX ≤2%; N=54)

Methods

- The study design of the Phase 3 HOPE-B clinical trial (NCT03569891) is shown in **Figure 2**⁴
- The primary endpoint was the annualized bleeding rate (ABR) in the post-treatment period (Months 7–18) compared with the lead-in period, evaluated in a non-inferiority analysis⁴
- Secondary endpoints included endogenous FIX activity, annualized FIX consumption, number of FIX infusions and adverse events (AEs)
- Participants were required to be on routine FIX prophylaxis prior to infusion (**Table 1**)⁴
- Patients with pre-existing neutralizing antibodies (NAbs) to AAV5 were not excluded

Figure 2: Phase 3 HOPE-B open-label,					
≥6-month lead-in period	Etranacogene dezaparvovec infusion		Follow	v-up	
SOC continuous FIX prophylaxis	2×10 ¹³ gc/kg	Weekly	Monthly	Twice yearly	
	0	 1 12	26	3-year data 5	
4	Wee	ks		Years	

FIX, factor IX; gc, genome copies; SOC, standard of care.

Presented at the Thrombosis & Hemostasis Summit of North America (THSNA), Chicago, IL, US, April 4–6, 2024. Previously presented at the 65th American Society of Hematology (ASH) Annual Meeting, San Diego, CA, US, December 9–12, 2023.

Results

STUDY PARTICIPANTS

- Only 2/54 patients did not complete 36 months follow-up:
- One patient who was free of prophylaxis died (unrelated to treatment)
- One patient who remained on prophylaxis withdrew consent for efficacy assessment

Dacalina	aharaat	aristias46
Daseine		ensucs "

	Participants (N=54)
ean age, years (range)	41.5 (19–75)
emophilia B severity, n (%)	
evere [FIX<1%]	44 (81.5)
1oderately severe [FIX 1–2%]	10 (18.5)
istory of infection, n (%)	
∨+	3 (5.6)
revious HBV	9 (16.7)
Previous HCV	31 (57.4)
re-existing AAV5 NAbs.* n (%)	21 (38.9)

AAV5, adeno-associated virus serotype 5; FIX, factor IX; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV+, human immunodeficiency virus-positive; NAb, neutralizing antibody *One participant had a titer of 3212 and 20 had a titer ≤678

SUSTAINED HEMOSTATIC PROTECTION

- Mean adjusted ABR for all bleeds during Months 7–36 was reduced by 64% vs lead-in (p=0.0004; **Figure 3**)
- A 68% reduction in mean adjusted ABR for FIX-treated bleeds was observed between leadin and Months 7–36 (p=0.0013)
- Overall, 61% (33/54) of participants experienced no joint bleeds at 36 months post-treatment

ABR, annualized bleeding rate; FIX, factor IX.

¹Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, MI, US. ²Van Creveldkliniek, University Medical Center Utrecht, Utrecht, Netherlands. ³Center for Molecular and Vascular Biology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium. ⁴Rigshospitalet, Copenhagen, Denmark. ⁵Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands. ⁶Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands. ⁷University of North Carolina, Chapel Hill, NC, US. ⁸University of South Florida, Tampa, FL, US. ⁹University of Southern California Keck School of Medicine, Children's Hospital Los Angeles, Los Angeles, CA, US. ¹⁰University of Utah, Salt Lake City, UT, US. ¹¹Vivantes Klinikum im Friedrichshain, Berlin, Germany. ¹²National Coagulation Centre, St. James's Hospital, Dublin, Ireland. ¹³CSL Behring, King of Prussia, PA, US. ¹⁴Division of Haematology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium.

SUSTAINED ENDOGENOUS FIX ACTIVITY

*One-stage FIX activity assays. Only uncontaminated samples were included in analysis, i.e., blood sampling did not occur within 5 half-lives of exogenous FIX use. aPTT, activated partial thromboplastin time; FIX, factor IX.

• Mean ± standard deviation (SD) FIX activity was sustained at 41.5 ± 21.7 IU/dL (n=50), 36.7 ± 19.0 IU/dL (n=50), and 38.6 ± 17.8 IU/dL (n=48) at 12 months, 24 months, and 36 months post-treatment, respectively (Figure 4)

By Month 36, FIX activity levels were in the mild and normal range for 47/54 patients (87%; **Figure 5**) – Four patients (7.4%) had

missing/uninterpretable data

Figure 4: Endogenous FIX activity levels over

Figure 5: FIX activity level* ranges at 36 months

REDUCED EXOGENOUS FIX USE

94.4% (51/54) of participants were free from continuous FIX prophylaxis through to Month 36 post-treatment

• FIX replacement use significantly decreased from lead-in by 96% (<u>Figure S1</u>; p<0.0001)

Medical writing support was provided by Meridian HealthComms Ltd, funded by CSL Behring. All authors reviewed and approved the final version of the poster.

Funding

Disclosures

SAFETY

- during Year 3

Table 2: Treatment-related AEs*

At least 1 TF

- **ALT** increas
- Headache
- Influenza lik
- AST increase
- **CPK** increas
- Dizziness
- Fatigue
- Nausea
- Arthralgia

Conclusions

treatment

References

- <u>Hemophilia-B</u>
- 3026(24)00006-1

• A total of 93 treatment-related AEs occurred up to 36 months post-treatment with 97.8% reported in the first 6 months (**Table 2**)

• No treatment related serious AEs. FIX inhibitors or thromboembolic events occurred

• No new deaths, hepatocellular carcinoma, or late treatment-related alanine aminotransferase elevations were reported

	At Month 36 follow-up	
	N (%)	# of events
AE	38 (70.4)	93
ed	9 (16.7)	10
	8 (14.8)	9
e illness	7 (13.0)	8
ed	5 (9.3)	6
ed	4 (7.4)	6
	4 (7.4)	4
	4 (7.4)	4
	4 (7.4)	4
	3 (5.6)	3

*Reported as MedDRA-PT and coded using MedDRA Version 26.0.

AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase;

CPK, creatine phosphokinase; MedDRA, Medical Dictionary for Regulatory Activities; PT, preferred term; TRAE, treatment related adverse event.

 Etranacogene dezaparvovec provides long-term, stable FIX Padua expression and superior bleed protection compared with FIX prophylaxis, with a favorable safety profile over 3 years post-

1. FDA. Etranacogene dezaparvovec (HEMGENIX[®]) US Prescribing Information. Updated November 2022. Accessed February 2024

2. HEMGENIX. Summary of Product Characteristics. Available at: https://www.ema.europa.eu/en/documents/product-information/hemgenix-epar-productinformation_en.pdf. Accessed February 2024

3. CSL. Global Newsroom. Available at: https://newsroom.csl.com/2023-10-26-Health-Canada-Authorizes-CSLs-HEMGENIX-R-etranacogene-dezaparvovec-as-First-Gene-Therapy-for-

4. Pipe S, et al. *N Engl J Med*. 2023;388(8):706–718

5. Coppens M, et al. Lancet Haematol. Published online March 1, 2024. doi:10.1016/S2352-

6. Pipe S, et al. Oral presentation at 65th ASH Annual Meeting 2023

Acknowledgements

CSL Behring

Wild-type **FIX**

AAV5, adeno-associated virus serotype 5; FIX, factor IX; hFIX, human factor IX; ITR, inverted terminal repeat; LP1, liver promoter 1; pA, poly A.

Figure 1: Etranacogene dezaparvovec

Etranacogene dezaparvovec (Hemgenix[®], AAV5-Padua hFIX)

Key exclusion criteria:

 \bigcirc SOC Screenin continuous FIX prophylaxis

≥6-month lead-in period

Figure 2: Phase 3 HOPE-B open-label, single-arm study design

AAV5, adeno-associated virus serotype 5; FIX, factor IX; gc, genome copies; HIV, human immunodeficiency virus; NAb, neutralizing antibody; SOC, standard of care.

Figure 3: Mean adjusted ABR during ≥6-month lead-in vs Months 7–36 post-treatment

Superiority was tested at a one-sided alpha level of 0.025 (p-value of ≤ 0.025 for post-dose / lead-in was statistically significant). P-values were not adjusted for multiplicity. ABR, annualized bleeding rate; FIX, factor IX.

Etranacogene dezaparvovec stably reduced ABR by 64% and demonstrated superiority to prophylaxis in the lead-in period through 3 years post-treatment

*One-stage FIX activity assays. Only uncontaminated samples were included in analysis, i.e., blood sampling did not occur within 5 half-lives of exogenous FIX use. aPTT, activated partial thromboplastin time; FIX, factor IX; IQR, interquartile range; SD, standard deviation.

Figure 4: Endogenous FIX activity levels over time

Overall stable FIX activity levels over 3 years post-treatment

FIX activity levels	At year 3
Mean ± SD	38.6 ± 17.8
Median	36.0
IQR	29.5 – 48.1
Min – Max	4.8 – 80.3

40%

5%

Figure 5: FIX activity level* ranges at 3 years post-treatment

4 (7.4%) missing/uninterpretable data

Reason for missing/uninterpretable data

Death at month 15 (unrelated to treatment)

Liver transplant (HCC unrelated to treatment)

Return to FIX prophylaxis at month 30

Non-analyzable sample (hemolysis)

>87% of total participants were in the mild and normal FIX activity level range at 3 years post-treatment

*Based on one-stage FIX activity levels from central laboratory results. Only "uncontaminated" samples were included in analysis, i.e., blood sampling did not occur within 5 half-lives of exogenous FIX use FIX, factor IX; HCC, hepatocellular carcinoma, NAb, neutralizing antibody.

2 (3.7%) lack of efficacy

planned dose

94.4% (51/54) of participants were free from continuous prophylactic FIX infusions through 3 years post-administration

*p-value is calculated using a paired t-test comparing post-treatment and lead-in periods. **One patient died (prophylaxis free) and another patient who remained on prophylaxis withdrew consent for efficacy assessment. FIX, factor IX; SD, standard deviation.

Figure S1: Exogenous FIX use over 3 years of follow-up

46.3% (25/54) of participants received no FIX infusions over 3-year period post-treatment

Disclosures

SWP has received consultancy fees from Apcintex, ASC Therapeutics, Bayer, BioMarin, CSL Behring, Equilibra Bioscience, GeneVentiv, HEMA Biologics, Freeline, LFB, Novo Nordisk, Pfizer, Regeneron/Intellia, Roche/Genentech, Sanofi, Takeda, Spark Therapeutics, and uniQure; has received research funding from Siemens; and holds a membership on a scientific advisory committee for GeneVentiv and Equilibra Bioscience. **PvdV** has received consultancy fees from Bayer. PV has received consultancy fees from CSL Behring, Roche, CAP-DCF, Bayer HealthCare, LeoPharma, Boehringer Ingelheim, Daiichi Sankyo, Pfizer, Sanofi-Aventis, ThromboGenics. **PK** has received consultancy fees from BioMarin Pharmaceuticals, CSL Behring, Novo Nordisk AS, and speaker fees from CSL Behring. FL has received research support from CSL Behring, Takeda, Sobi, and uniQure; is a consultant for uniQure, Sobi, Biomarin, and Takeda, from which the fees go to the institution; and was a member of the data safety and monitoring board for a study by Roche. MC has received financial support for research from Anthos, Bayer, CSL Behring/uniQure, Novo Nordisk and Roche; and honoraria for lecturing or consultancy from Alexion/AstraZeneca, Bayer, CSL Behring, Daiichi Sankyo, Sobi and Viatris. All funds were received by his institution. **NK** has received consultancy fees from BioMarin, CSL Behring, Genentech, and Novo Nordisk. **NV** has received consultancy fees from Biogen Idec. **GY** has received consultancy fees from BioMarin, Genentech, Novo Nordisk, Pfizer, Sanofi, Spark Therapeutics, and Takeda. **RL** has received consultancy fees from CSL Behring, Novo Nordisk. **RK** has received research support from Bayer, CSL Behring, Novo Nordisk, Pfizer, Sobi, and Takeda; honoraria and speaker fees from Bayer, Biomarin, Biotest, CSL Behring, Novo Nordisk, Octapharma, Pfizer, Roche/Chugai, Sanofi, Sobi, and Takeda. NO'C has received consultancy fees from CSL Behring, F.Hoffman- La Roche, Novo Nordisk, Sanofi, and speaker fees from Takeda. All funds were received by a charitable organization. **SIQ** and **PEM** are employees of CSL Behring. CH has received consultancy and/or lecture fees from Bayer, Takeda, Roche, CSL Behring, Novo Nordisk, Pfizer, Sobi, LFB, OctaPharma, Uniqure and Biomarin.

