Long-term efficacy and safety of subcutaneous garadacimab for prophylaxis of HAE attacks: Results from a multicenter phase 3 study (VANGUARD) and open-label extension

1. E. Bernstein^{6,7}, W. H. Vang⁸, E. S. G. Stroes⁹, I. Anderson¹⁸, K. Kawahata¹⁹, Y. Suzuki²⁰, P. Staubach²¹, R. Treudler²², H. Feuersenger²³, I. Jacobs²⁴ and T. J. Craig²⁵, J. A. Bernstein^{6,7}, W. H. Yang⁸, E. S. G. Stroes⁹, I. Ohsawa¹⁰, R. Treudler²², H. Feuersenger²³, I. Jacobs²⁴ and T. J. Craig²⁵, J. A. Bernstein^{6,7}, W. H. Yang⁸, E. S. G. Stroes⁹, I. Ohsawa¹⁰, R. Treudler²², H. Feuersenger²³, I. Jacobs²⁴ and T. J. Craig²⁵, J. A. Bernstein^{6,7}, W. H. Yang⁸, E. S. G. Stroes⁹, I. Ohsawa¹⁰, R. Treudler²², H. Feuersenger²³, I. Jacobs²⁴ and T. J. Craig²⁵, J. A. Bernstein^{6,7}, W. H. Yang⁸, E. S. G. Stroes⁹, I. Ohsawa¹⁰, R. Treudler²², H. Feuersenger²³, I. Jacobs²⁴ and T. J. Craig²⁵, J. A. Bernstein^{6,7}, W. H. Yang⁸, E. S. G. Stroes⁹, I. Ohsawa¹⁰, R. Treudler²⁴, H. Feuersenger²³, I. Jacobs²⁴ and T. J. Craig²⁵, J. A. Bernstein^{6,7}, W. H. Yang⁸, E. S. G. Stroes⁹, I. Ohsawa¹⁰, R. Treudler²⁴, H. Feuersenger²³, I. Jacobs²⁴, and T. J. Craig²⁵, J. A. Bernstein^{6,7}, W. H. Yang⁸, E. S. G. Stroes⁹, I. Ohsawa¹⁰, R. Treudler²⁴, H. Feuersenger²⁴, I. Jacobs²⁴, and T. J. Craig²⁵, J. A. Bernstein^{6,7}, W. H. Yang⁸, E. S. G. Stroes⁹, I. Ohsawa¹⁰, R. Treudler²⁴, H. Feuersenger²⁴, I. Jacobs²⁴, A. Stroes¹⁰, R. Treudler²⁵, J. A. Bernstein^{6,7}, W. H. Stroes¹⁰, R. Treudler²⁵, H. Feuersenger²⁴, I. Jacobs²⁴, A. Stroes¹⁰, R. Treudler²⁴, R. Treudler²⁴, R. Treudler²⁵, J. A. Stroes¹⁰, R. Treudler²⁵, H. Treudler²⁵, J. Stroes¹⁰, R. Treudler²⁵, J. Stroes¹⁰, R. Treudler²⁴, J. Stroes¹⁰, R. Treudler²⁵, J. Stroes²⁴, R. Treudler²⁵, J. Stroes²⁴, R. Treudler²⁵, J. Stroes²⁴, R. Treudler²⁵, J. Stroes¹⁰, R. Treudler²⁴, J. Stroes¹⁰, R. Treudler²⁵, J. Stroes²⁴, R. Stroes²⁴,

1 and Fraunhofer Institute for Asthma and Allergy, Chavit, ² Allergy, Berlin, Germany; ² Allergy, Berlin, Germany; ² Allergy, Immunology, Chavit, Budapest, Hungary; ⁴ Institute for Asthma and Allergy, Chevy Chase, MD, USA; ⁵ Allergy, Asthma Clinical Research, Walnut Creek, CA, USA; ⁶ University of Cincinnati, Department of Internal Medicine, Angioedema Center, Cincinnati, OH, USA; ⁸ University of Cincinnati, OH, USA; ⁹ University of Cincinnati, OH, USA; ⁹ University of Ottawa, Ottawa, Ottawa, ON, Canada; ⁹ Division of Rheumatology, Saiyu Soka Hospital, Saitama, Japan; ¹¹ Division of Allergy & Clinical Immunology, David Geffen School of Medicine and Medicine and Medicine and States and S a University of California Los Angeles, Los Angeles, CA, USA; ¹² Allergy, Asthma & Immunology Associates, Ltd, Internal Medicine, UA College of Medicine, UA College, CA, USA; ¹³ ARA Research Center, Dallas, TX, USA; ¹⁴ HZRM Haemophilia Center, Dallas, TX, USA; ¹⁵ HZRM Haemophilia Center, Dallas, TX, USA; ¹⁴ HZRM Haemophilia Center, Dallas, TX, USA; ¹⁴ HZRM Haemophilia Center, Dallas, TX, USA; ¹⁵ HZRM Haemophilia Center, Dallas, TX, 12 Ex and Department of Clinical Immunology and Allergy, St. Michael's Hospital, Toronto, ON, Canada; 18 Allery, University Leipzig Interdisciplinary Center for Jermatology, Leipzig Interdisciplinary Center for Jermatology, Venereology and Allergy, St. Michael's Hospital, Toronto, ON, Canada; 19 St. Marianna University School of Medicine, Kawasaki-shi, Kanagawa, Japan; 20 Department of Dermatology, Leipzig Interdisciplinary Center for Jermatology, Leipzig Interdisciplinary Center for Jermatology, Juntendo University School of Medicine, Tokyo, Japan; 20 Department of Dermatology, Leipzig Interdisciplinary Center for Jermatology, Juntendo University School of Medicine, Tokyo, Japan; 20 Department of Dermatology, Leipzig Interdisciplinary Center for Jermatology, Leipzig Interdisciplinary Center for Jermatology, Leipzig Interdisciplinary, Center for Jermatology, Leipzig Interdisciplinary, Center for Jermatology, Jermany; 20 Department of Dermatology, Leipzig Interdisciplinary, Center for Jermatology, Leipzig Interdisciplinary, Center for Jermatology, Jermany; 20 Department of Dermatology, Jermany; 20 Depa Allergology – CAC, Leipzig, Germany; ²³CSL Behring Innovation GmbH, Marburg, Germany; ²⁴CSL Behring, King of Prussia, PA, USA; ²⁵Allergy, Asthma and Immunology, Department of Medicine and Pediatrics, Penn State University, Hershey, PA, USA;

BACKGROUND: PIVOTAL PHASE 3 EFFICACY OUTCOMES¹

DNCLUSIONS

Robust and durable efficacy of garadacimab from pivotal Phase 3 study, 95% of attack-free patients sustained attack-free status in OLE study

*One patient in the placebo arm was excluded from efficacy analysis as they received treatment for <30 days. [†]TEAEs in HAE-C1-INH patients. [‡]Efficacy analysis data cut-off: September 2022. [§]Most frequently related TEAE to garadacimab. [¶]In the pivotal Phase 3 study, there was one severe SAE (laryngeal attack) assessed as not related to trial treatment: the patient made a full recovery after being hospitalized and being kept under observation overnight. In the overall OLE population (N=161), there were three SAEs (COVID-19, n=2; abdominal HAE attack, n=1) assessed as not related to garadacimab and all had resolved at time of data-cut-off. *As defined in the protocol, AESIs per protocol included severe hypersensitivity including anaphylaxis, thromboembolic or abnormal bleeding events; none met AESI criteria as per protocol. AESI, adverse event of special interest per protocol; HAE, hereditary angioedema; HAE-CI-INH, hereditary angioedema with C1-esterase inhibitor deficiency; OLE, open-label extension; q1m, once monthly; SAE, serious adverse event; SC, subcutaneous; TEAE, treatment-emergent adverse event 1. Craig TJ et al. Lancet 2023;401:1079-1090.

reduction in mean attack rate at **87%** 6 months of the pivotal Phase 3 study (key secondary endpoint; P<0.0001)

DURABLE REDUCTION IN MONTHLY HAE ATTACK RATE VS RUN-IN

Comparable attack reduction for garadacimab (96%) and placebo (93%) roll-over patients; sustained reduction in monthly HAE attack rate vs run-in

FAVORABLE LONG-TERM SAFETY PROFILE CONSISTENT WITH PIVOTAL PHASE 3 STUDY

	Pivotal Phase 3 ¹		OLE (patients received garadacimab)		
Type of event, n (%)	Garadacimab (n=39)	Placebo (n=25)	Garadacimab roll-over (n=36)	Placebo roll-over (n=21)	AESIs# per
Total TEAEs	25 (64)	15 (60)	27 (75)	14 (67)	garadacimab
Related to treatment	4 (10)	3 (12)	2 (6)	4 (19)	No deaths or
COVID-19 infection	0	3 (12)	10 (28)	6 (29)	discontinuations
Injection-site reaction§	2 (5)	3 (12)	2 (6)	4 (19)	due to TEAEs
Upper-respiratory tract infection	4 (10)	2 (8)	3 (8)	0	In OLE, most
Nasophayngitis	3 (8)	1 (4)	3 (8)	2 (10)	was COVID-19
Headache	3 (8)	4 (16)	0	1 (5)	

pivotal Phase 3 study

DISCLOSURES

Favorable long-term safety profile consistent with