Efficacy and safety of subcutaneous garadacimab for the prophylaxis of hereditary angioedema (HAE) attacks in adult and adolescent patients with HAE: results from a multicenter, placebo-controlled Phase 3 trial

Timothy J Craig¹, Markus Magerl², Avner Reshef³, H Henry Li⁴, Joshua S Jacobs⁵, Jonathan A Bernstein⁶⁷, Henriette Farkas³, William R Lumry¹⁴, Inmaculada Martinez Saguer¹⁵, Emel Aygören-Pürsün¹⁶, Bruce Ritchie¹⁷, Gordon L Sussman¹³, John Anderson¹ゥ, Kimito Kawahata²⁰, Yusuke Suzuki²¹, Petra Staubach²², Regina Treudler²³, Henrike Feuersenger²⁴, Lolis Wieman²⁵, and Iris Jacobs²⁵

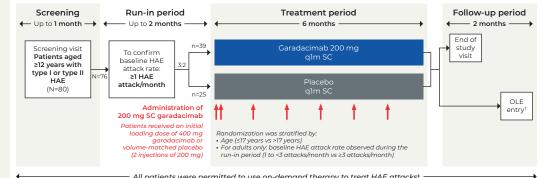
¹Allergy, Asthma and Immunology, Department of Medicine and Pediatrics, Penn State University, Hershey, PA, USA; ¹Unstitute for Asthma and Allergy, Chevy Chase, MD, USA; ⁵Allergy and Asthma Clinical Research, Walnut Creek, CA, USA; ⁵University of Cincinnati, Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, Clincinnati, OH, USA; Department of Netherlands; Departme Saitama, Japan; "Division of Allergy and Clinical Immunology, David Geffen School of Medicine at University of California Los Angeles, CA, USA; "AARA Research Center, Dallas, TX, USA; "AARA Research Center, Dallas, TX, USA; "Allergy, Asthma and Immunology, Department of Medicine, UA College of Medicine, University of Alberta, Edmonton, AB, Canada; *Gordon Sussman Clinical Research, Birmingham, AL, USA; *Ost. Marianna University Faculty of Medicine, Kawasaki-shi, Kanagawa, Japan; *University Leipzig Medical Faculty, Department of Dermatology, Juntendo University Faculty of Medicine, Kawasaki-shi, Kanagawa, Japan; *University Medical Research, Birmingham, AL, USA; *Ost. Marianna University Medical Research, Birmingham, AL, USA; *Ost. Marianna University Faculty of Medicine, Kawasaki-shi, Kanagawa, Japan; *University Medical Research, Birmingham, AL, USA; *Ost. Marianna University Medical Research, Birmingham, AL, USA; *Ost. Marianna University Faculty of Medicine, Kawasaki-shi, Kanagawa, Japan; *University Medical Research, Birmingham, AL, USA; *Ost. Marianna University Medical Research, Bir Dermatology, Venereology and Allergology, Leipzig Interdisciplinary Center for Allergology – CAC, Leipzig, Germany; 24CSL Behring, King of Prussia, PA, USA. Corresponding author: Dr Timothy J. Craig, DO. Email: tcraig@pennstatehealth.psu.edu

- Once-monthly subcutaneous (SC) garadacimab elicited significant reductions in HAE attack rate per month (100% reduction in median attack rate vs placebo)
- Garadacimab demonstrated early onset and sustained control of HAE attacks (71.8% attack free in first 3 months and 61.5% attack free over 6-month treatment period)
- Favorable safety profile observed with no reported abnormal bleeding or thrombotic adverse events (AESIs per protocol)
- Long-term efficacy and safety are currently under evaluation in an open-label extension study (ClinicalTrials.gov identifier: NCT04739059)

BACKGROUND

- HAE is a rare, often debilitating, potentially fatal disease characterized by unpredictable swellings
- Most patients with HAE display deficiency (type I) or dysfunction (type II) of C1-INH, causing contact system dysregulation leading to uncontrolled bradykinin production via the kallikrein-kinin pathway¹⁻³
- FXIIa is an initiator of the contact system, which includes production of bradykinin, a key mediator of vascular permeability, vasodilation, and fluid efflux^{3,4}
- · Garadacimab is a fully human, immunoglobulin G4, monoclonal antibody that inhibits FXIIa at the origin of the contact system cascade, reducing bradykinin production^{5,6}

OBJECTIVE



• To report the efficacy and safety of once-monthly SC 200 mg garadacimab in patients with type I/II HAE from the global VANGUARD Phase 3, randomized, double-blind, placebo-controlled, multicenter study (NCT04656418)

METHODS

- Key eligibility criteria and study design shown in Figure 1
- Primary endpoint and three secondary endpoints were hierarchically tested
- Primary endpoint: time-normalized number of HAE attacks through Day 182 (HAE attack rate per
- Key secondary endpoints supporting hierarchical testing: time-normalized number of HAE attacks at various time-points during treatment period (supporting H02: reduction in mean number of HAF attacks vs placebo) reduction in HAF attack rate vs run-in period (supporting H03: number of patients who do not experience an HAE attack within first 3 months) SGART (supporting **H04:** percent of patients with 'good' or better SGART responses at Day 182)
- Secondary endpoints: time-normalized number of HAE attacks requiring on-demand therapy, time-normalized number of moderate/severe HAE attacks
- Exploratory efficacy endpoints: time to first HAE attack, AE-QoL score
- Safety endpoints were serious AEs, TEAEs and AESIs per protocol

RESULTS

- 64 patients (including 6 adolescents) were randomized to garadacimab (n=39) or placebo (n=25) and entered treatment (Table 1)
 - Demographics and baseline characteristics were generally comparable

Table 1. Demographics and baseline characteristics

Characteristics	Placebo q1m (n=25)	Garadacimab 200 mg q1m (n=39)	
Age, years, mean (SD)	37.8 (12.80)	43.3 (17.45)	
Female, n (%)	14 (56.0)	24 (61.5)	
Race, n (%) White Asian Other*	22 (88.0) 2 (8.0) 1 (4.0)	33 (84.6) 4 (10.3) 2 (5.2)	
BMI, kg/m², mean (SD)	28.4 (7.56)	27.9 (6.02)	
HAE type I, n (%)	22 (88.0)	34 (87.2)	
HAE attack rate per month during run-in period Mean (95% CI) 2.52 (2.13, 2.91) 3.07 (2.41, 3.73) Median (IOD) 3.61 (175)			

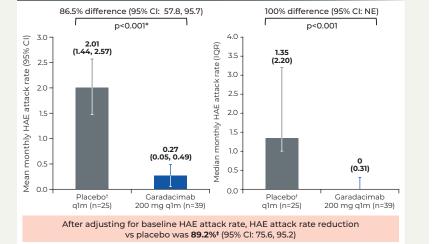
cluding American Indian, Alaska Native, Black or African American, Native Hawaiian, or Pacific Islande

Time-normalized number of HAE attacks through Day 182 (primary endpoint)

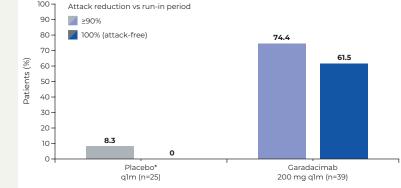
- H01: Mean 95% CI: 0.27 (0.05, 0.49) in garadacimab arm vs 2.01 (1.44, 2.57) in placebo arm (p<0.001) (**Figure 2**)
- Least square mean (95% CI): 0.22 (0.11, 0.47) in garadacimab arm vs 2.07 (1.49, 2.87) in placebo arm
- Median (IQR) HAE attack rate per month: 0.00 (0.31) in garadacimab arm vs 1.35 (2.2) in placebo arm (**Figure 2**)

Percentage reduction in time-normalized number of HAE attacks through Day 182 vs placebo (secondary endpoint)

- H02: Mean HAE attack rate: 86.5% reduction (95% CI 57.8, 95.7) (Figure 2) Least squares mean: 89.2% reduction (95% CI 75.6, 95.2)
- Median HAE attack rate: 100% reduction (95% CI not estimable) (Figure 2)


Reduction in HAE attack rate vs run-in period (secondary endpoint)

• H03: Attack-free patients within first 3 months: 28 patients (71.8%) for garadacimab vs 2 (8.3%) for placebo (p<0.001) • Attack-free patients over entire 6-month treatment period: 24 patients


(61.5%) for garadacimab vs none for placebo (**Figure 3 and 4**)

• ≥90% reduction in HAE attack rate over entire 6-month treatment period: 29 patients (74.4%) for garadacimab vs 2 (8.3%) for placebo (Figure 3)

igure 2. HAE attack rate per month (primary endpoint)

Figure 3. Percentage of patients with 100% or ≥90% reducti

*One patient receiving placebo with <30 days in the study period was excluded from the analysis

Number of moderate/severe HAE attacks per month (secondary endpoint)

 Mean (95% CI): 0.13 (0.03, 0.22) in garadacimab arm vs 1.35 (0.86, 1.84) for placebo (90.4% reduction) (**Figure 4**)

Time to first HAE attack (exploratory endpoint)

• Time to first HAE attack for 75% of patients (or attack free): ≥72 days in garadacimab arm vs ≥5 days in placebo arm

AE-QoL score (exploratory endpoint)

• Clinically meaningful quality of life improvement (AE-QoL score reduction ≥6 points): Mean (SD) total score reduction was -26.5 (17.9) from baseline to Day 182 in garadacimab arm vs -2.2 (19.1) in placebo arm

Figure 4. HAE attacks during the run-in and treatment periods

★ On-demand treatment

Study treatment administration

414(1)(1)

444

-1111 - 1111

- Run-in period

☐ Garadacimab 200 mg ■ Moderate

- Rates of TEAEs comparable between garadacimab and placebo: 64.1% vs 60.0%, respectively (Table 2)
- Most common TEAEs are shown in Table 2
- · No deaths or AEs leading to discontinuation
- One serious, severe AE occurred in the garadacimab arm (laryngeal attack managed with overnight hospitalization and assessed as not related to garadacimab by the investigator)
- No AESIs per protocol, such as anaphylaxis, thromboembolic events, and abnormal bleeding were identified

Table 2. Safety results during the 6-month treatment period

TEAEs, n (%)*	Placebo qlm (n=25)	Garadacimab 200 mg q1m (n=39)
Patients experiencing ≥1 TEAE	15 (60.0)	25 (64.1)
Any serious TEAE	0	1† (2.6)
TEAE leading to study discontinuation	0	0
AESI per protocol	0	0
TEAE related to study treatment	3 (12.0)	4 (10.3)
Most common TEAEs in ≥5% of pat MedDRA Preferred Term	tients	
Jpper-respiratory tract infections	2 (8.0)	4 (10.3)
Nasopharyngitis	1 (4.0)	3 (7.7)
Headache	4 (16.0)	3 (7.7)
Injection-site reactions [‡]	3 (12.0)	2 (5.1)
Number of patients with at least one AE;		

One severe, serious TEAE (not related to study treatment) due to overnight hospital observation for a larvngeal HAE attack and two in placebo arm), bruising (one patient in the garadacimab arm), and pruritus (one patient in the gara

- . Busse PJ et al. J Allergy Clin Immunol Pract 2021;9:132–150.e3;
- Maurer M et al. Allergy 2022;77:1961–1990;
- Biörkqvist J et al. Thromb Haemost 2013:110:399–407
- 6. Craig T et al. Lancet 2022;399:945-955.

The authors thank all the study investigators, trial site coordinators, and patients who participated in this trial

CSL Behring provided funding for the trial, as well as for medical writing assistance. Writing support was

AE, adverse event; AESI, adverse event of special interest; BMI, body mass index; CI, confidence interval; HAE, hereditary angioedem

HAEA 2023 National Summit | Orlando, Florida, USA | July 20-23, 2023