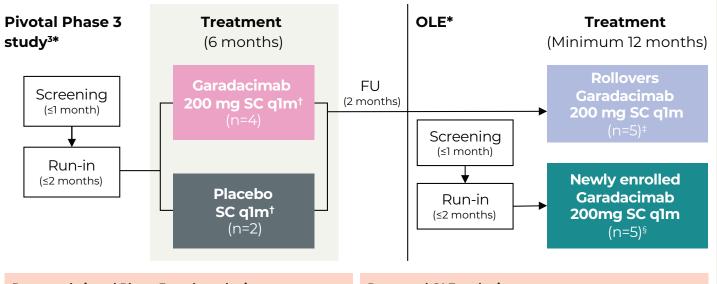
Garadacimab for hereditary angioedema prophylaxis in adolescents: efficacy and safety from the VANGUARD Phase 3 and 3b open-label extension trial (first interim analysis)

Markus Magerl¹, Inmaculada Martinez Saguer², Joshua S Jacobs³, <u>H Henry Li</u>⁴, Jonathan A Bernstein⁵, Connie Hsu⁶, Karl V Sitz⁷, Ingo Pragst⁸, Henrike Feuersenger⁸, Lolis Wieman⁹, Maressa Pollen⁹, Avner Reshef¹⁰ ¹Institute of Allergology, Charité – Berlin University of Medicine, and Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Allergy and Allergy, Chevy Chase, MD, USA; ⁴Institute for Asthma and Allergy, Chevy Chase, MD, USA; ⁵Division of Rheumatology, Allergy and Allergology, Berlin, Germany; ³Allergy & Asthma Allergy, Chevy Chase, MD, USA; ⁵Division of Rheumatology, Allergy and Allergology, Berlin, Germany; ³Allergy & Asthma Clinical Research, Walnut Creek, CA, USA; ⁶Division of Rheumatology, Allergy & Asthma Allergy, Chevy Chase, MD, USA; ⁵Division of Rheumatology, Allergy & Asthma Clinical Research, Walnut Creek, CA, USA; ⁶Division of Rheumatology, Allergy and Allergology, Berlin, Germany; ³Allergy & Asthma Clinical Research, Walnut Creek, CA, USA; ⁶Division of Rheumatology, Allergy & Asthma Clinical Research, Walnut Creek, CA, USA; ⁶Division of Rheumatology, Allergy & Asthma Clinical Research, Walnut Creek, CA, USA; ⁶Division of Rheumatology, Allergy & Asthma Clinical Research, Walnut Creek, CA, USA; ⁶Division of Rheumatology, Allergy & Asthma Clinical Research, Walnut Creek, CA, USA; ⁶Division of Rheumatology, Allergy & Asthma Clinical Research, Walnut Creek, CA, USA; ⁶Division of Rheumatology, Allergy & Asthma Clinical Research, Walnut Creek, CA, USA; ⁶Division of Rheumatology, Allergy & Asthma Clinical Research, Walnut Creek, CA, USA; ⁶Division of Rheumatology, Allergy & Asthma Clinical Research, Walnut Creek, CA, USA; ⁶Division of Rheumatology, Allergy & Asthma Clinical Research, Walnut Creek, CA, USA; ⁶Division of Rheumatology, Allergy & Asthma Clinical Research, Walnut Creek, CA, USA; ⁶Division of Rheumatology, Allergy & Asthma Clinical Research, Walnut Creek, CA, USA; ⁶Division of Rheumatology, Allergy & Asthma Clinical Research, Walnut Creek, CA, USA; ⁶Division of Rheumatoology, Allergy & Asthma Clinical Research, Walnut Creek, CA, USA; ⁶Division of Rheumatoology, Allergy & Asthma Clinical Research, Walnut Creek, CA, USA; Cincinnati, OH, USA; ⁶Research Solutions of Arizona, PC, Litchfield Park, AZ, USA; ⁷Little Rock AIlergy and Asthma Clinic, Little Rock, AR, USA; ⁸CSL Behring, King of Prussia, PA, USA; ¹⁰Allergy, Immunology & Angioedema Center, Barzilai University Hospital, Ashkelon, Israel

CONCLUSIONS


- Once-monthly garadacimab was efficacious in preventing hereditary angioedema (HAE) attacks in adolescents (aged 12-≤17 years)
- Durability of effect is supported by results of the first interim analysis from the ongoing open-label extension (OLE) (NCT04739059)^{1,2}
- Favorable safety and tolerability profile in adolescents
- Efficacy and safety in adolescents were consistent with the overall pivotal Phase 3 study³ and OLE
- A planned Phase 3 trial will evaluate garadacimab in pediatric patients with HAE (aged 2–11 years) (NCT05819775, EudraCT: 2022-502386-13-00)

BACKGROUND AND OBJECTIVE

- HAE is a rare, debilitating disease characterized by unpredictable submucosal or subcutaneous swellings (HAE attacks)³
- Symptoms of HAE typically begin in childhood with attack intensity worsening during puberty⁴
- Efficacy and safety of garadacimab (monoclonal antibody targeting activated factor XII) have been demonstrated in Phase 2 (adult only) and pivotal Phase 3 studies^{3,5}
- Safety and efficacy data in adolescents from the pivotal Phase 3 study and ongoing OLE are reported

METHODS

Figure 1. Adolescent patients from Pivotal Phase 3 and OLE study design

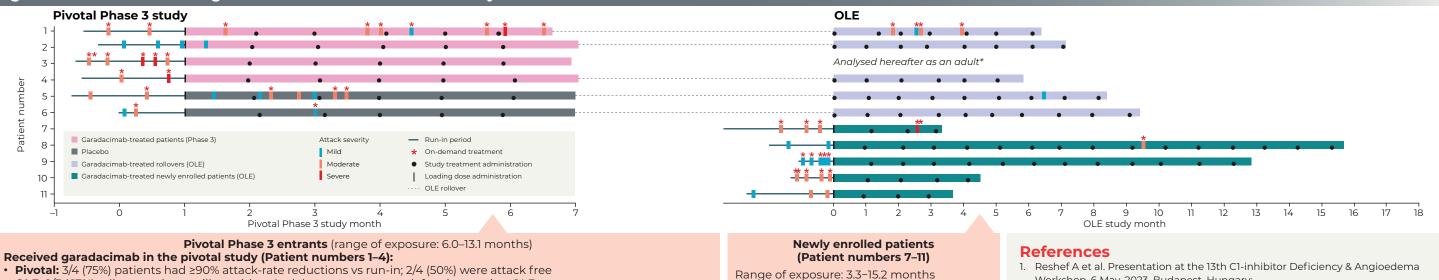
Presented pivotal Phase 3 study endpoints

- Primary: time-normalized number of HAE attacks
- Secondary: reduction in HAE attack rate vs run-in
- Safety: TEAEs, AESIs, SAEs

- **Presented OLE endpoints**
- Primary: TEAEs
- Secondary: time-normalized number of HAE attacks, reduction in HAE attack rate vs run-in

All patients were permitted to use on-demand therapy to treat HAE attacks throughout the pivotal Phase 3 and OLE studies

*Eligibility criteria for entry into the pivotal Phase 3 study and OLE included: clinically confirmed HAE, aged ≥12 years and baseline attack rate ≥1 HAE attack/month; In the pivotal Phase 3 study, patients received a loading dose of garadacimab 400 mg SC as first dose (2 injections of 200 mg) or volume-matched placebo; *One patient aged 18 years at OLE enrolment was considered an adult; they were included in the pivotal Phase 3 analysis but were not included in the OLE analysis Newly enrolled patients in OLE received a loading dose of garadacimab 400 mg SC as first dose


AESI, adverse event of special interest; FU, follow-up; HAE, hereditary angioedema; OLE, open-label extension; q1m, once monthly; SAE, serious adverse event; SC, subcutaneous; TEAE, treatment-emergent adverse event.

RESULTS

Table 1. Baseline characteristics and attack reduction							
			Monthly mean attack rate (% reduction vs run-in)				
Patient*	Sex	Garadacimab exposure (months) ⁺	Run-in	Pivotal Phase 3	OLE		
1	F	12.3	1.2	1.2 (–5.8)	0.6 (45.5)		
2	М	13.1	2.2	0.2 (92.3)	O (100) ‡		
3	F	6.0	2.9	O (100) ‡	5		
4	М	11.8	1.2	O (100) ‡	O (100) ‡		
5	М	8.3	1.0	Placebo: 1.2 (–12.2)	0.1 (88.3)		
6	F	9.3	1.8	Placebo: 0.2 (90.8)	O (100) ‡		
7	М	3.3	0.9	_	0.3 (65.7)		
8	F	15.2	1.0	-	0.1 (93.8)		
9	F	12.5	4.9	-	O (100) ‡		
10	F	4.4	3.2	-	O (100) ‡		
11	М	3.6	1.2	_	O (100) ‡		
- · · ·							

Garadacimab-treated (Phase 3) Placebo Garadacimab-treated rollovers (OLE) Newly enrolled (OLE) *All adolescents (aged 12–≤17 years) had HAE type 1, were White and had a BMI range of 17.9–42.3 kg/m²; †Garadacimab exposure inclusive of the pivotal Phase 3 *One patient aged 18 years at OLE enrolment was considered an adult; therefore, they were included in the pivotal Phase 3 analysis but were not included in the OLE analysis †Included one occurrence each of sore throat (pivotal Phase 3 study), upper respiratory tract infection, flu-like symptoms, COVID-19, and acid reflux (OLE); study and QLE where applicable: #Attack-free patients: #Patient aged 18 years at QLE enrolment was considered an adult; therefore, they were included in the pivotal Phase 3 analysis but were not included in the OLE analysis. *Includes abnormal bleeding events, thromboembolic events and severe hypersensitivity, including anaphylaxis. AE, adverse event; OLE, open-label extension; SAE, serious adverse event; TEAE, treatment-emergent adverse event BMI, body mass index; F, female; M, male; OLE, open-label extension

Figure 2. HAE attacks during the Pivotal Phase 3 and OLE study

- OLE: 2/3 (67%) rollover patients still considered adolescents were attack free in ongoing OLE
- Patient 1: Non-responder in the pivotal study but attained a 45.5% attack-rate reduction in the OLE vs run-in and they have remained attack free for >2 months

Received placebo in the pivotal study (Patient numbers 5 and 6): • OLE: Achieved 88% and 100% attack-rate reductions, respectively, vs run-in 3/5 (60%) rollover adolescents were attack free throughout OLE

*Patient aged 18 years at OLE enrolment was considered an adult; therefore, they were included in the pivotal Phase 3 analysis but were not included in the OLE analysis OLE, open-label extension

Table 2. Favorable safety profile in adolescents

,			
		Pivotal Phase 3 study Exposure: 6 months	OLE Exposure range: 3.3–15.3 months
AEs	Placebo (n=2)	Garadacimab (n=4)	Garadacimab (n=10)*
Patients with any TEAEs, n (%)	2 (100)	2 (50)	6 (60)
Total TEAEs, n	7	4	20
Mild, n (%)	7 (100)	3 (75)	16 (80)
Moderate,† n (%)	0	1 (25)	4 (20)
Severe, n	0	0	0
SAEs, n	0	0	0
TEAEs leading to discontinuation, n	0	0	0
TEAEs of special interest, [‡] n	0	0	0
Treatment-related TEAEs, n	0	0	0
Injection-site reactions, n	0	0	0
Most common TEAEs in ≥2 patients			
COVID-19 infection, n (%)	2 (100)	0	3 (30)
Common cold, n (%)	0	1 (25)	2 (20)

vs run-in, and 4/5 had >93% reduction vs run-in

• 1/5 subject had 65.7% attack-rate reduction

- 3/5 (60%) newly enrolled adolescents were attack free throughout OLE
- Workshop, 6 May, 2023, Budapest, Hungary;
- 2. Rashef A et al. Poster presentation at HAEA 2023 National Summit, July 21, 2023;
- 3. Craig TJ et al. Lancet 2023;401:1079–1090;
- 4. Bygum A et al. Clin Transl Allergy 2019;9:37;
- 5. Craig TJ et al. Lancet 2022;399:945-955.

Disclosures

This study was sponsored by CSL Behring. Writing support was provided by OPEN Health Communications and Meridian HealthComms.

You **must not** copy this work ithout permissio